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Climate change (CC) remains a global concern, negatively impacting food security and human health—
particularly through its impacts on climate-smart agriculture. Climate-Smart Agriculture (CSA) has emerged as
an important adaptation and mitigation strategy to address the effects of CC, but its adoption has been low in
Nigeria due to limited awareness and knowledge of CSA, among other factors. Thus, this study was conducted
to determine snail farmers' willingness to adopt climate-smart agriculture practices in Anambra State. A
multistage sampling technique was adopted. The first stage involved the purposive selection of Local
Government Areas (LGAs), including Ogbaru, Anambra West, Thiala, Awka South, Idemili North, and
Anaocha. The selection was based on the degree of involvement in snail farming as documented by the Anambra
State Agricultural Development Program. At the second stage, three communities were randomly selected from
each LGA and in the third stage, random sampling was used to select ten snail farmers per community. A total
of thirty farmers were sampled per LGA, totaling a hundred and eighty (180) sampled farmers. A structured
questionnaire was then used to collect data on farmers’ Socio-economic characteristics, the willingness to use
climate-smart practices by snail farmers and snail farmer’s annual yield. Descriptive and inferential analyses
were used. The result revealed that 65% of the respondents were males with a mean age of 39 years. The
majority (60.0%) had secondary education, and 70% of respondents had a household size of 1-5 persons. The
adaptation methods employed were water conservation (50.0%), agroforestry integration (27.5%), waste
management (28.33%) and natural pest control (87.72%). Training, farmers' interest in CSA, and past
implementation of CSA are significant at the 1% level. positively and significantly affect willingness to adopt
CSA at 5% and 1%, respectively, while the type of climate-smart agriculture adopted negatively affected
willingness to adopt CSA—flock size. (P=0.000), water conservation, agroforestry integration, waste
management, and natural pest control (P=0.01) had positive and statistically significant effects on yield. The
higher the number of snails used for production, the higher the yield. The study recommends training and water
conservation as the minimum variables to increase adoption of CSA and, consequently, increase yield.
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Climate change refers to long-term shifts in global or regional climate patterns that can result from natural
processes such as solar cycles and volcanic eruptions, as well as from human activities such as deforestation
and industrialization (EPA, 2024; NASA, 2024). Natural causes of climate change include meteorite impacts,
volcanic eruptions, forest fires, ocean currents, and fluctuations in sunspot and solar cycles (NOAA, 2024; UCL,
2024). For example, volcanic eruptions inject aerosols into the atmosphere that temporarily cool the Earth’s
surface, while solar variations can influence temperature over centuries. However, these natural changes cannot
fully explain the rapid warming observed in recent decades (EPA, 2024; Royal Society, 2023). Human activities
remain the dominant driver of climate change. Key contributors include land-use changes such as deforestation
and agricultural expansion, along with emissions from fossil fuel combustion—coal, petroleum, and natural
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gas—which release large amounts of greenhouse gases (IPCC, 2023; NRDC, 2023). Deforestation in particular
reduces natural carbon sinks, accounting for about 11% of global greenhouse gas emissions (Wikipedia, 2024).
Additionally, burning fossil fuels has increased atmospheric CO: concentrations by more than 40% since the
Industrial Revolution, a trend strongly linked to the current climate crisis (NASA, 2024; Royal Society, 2023). Recent
assessments show that human activities have already caused about 1.0°C of global warming above pre-industrial
levels. If this trajectory continues, global warming is likely to reach 1.5°C between 2030 and 2052 (United Nations,
2022).

Alongside these global concerns, agriculture and food systems are also adapting to climate change. Snail farming,
also known as heliciculture, involves raising edible land snails primarily for human consumption. Snails are valued
as a rich source of protein, minerals, and vitamins, and are considered a delicacy in many parts of the world. Beyond
their nutritional benefits, snail farming is increasingly recognized for its sustainability and relatively low
environmental footprint. According to Ojigbede et al. (2020), snail farming in Nigeria is predominantly practiced by
small-scale farmers, and socio-economic, institutional, and technological factors influence its productivity and
profitability.

Climate-Smart Agriculture (CSA) has emerged as an important adaptation and mitigation strategy to counter
the effects of climate change (Partey et al., 2018). Farmers’ awareness and knowledge of CSA, access to credit, and
extension services are significant drivers of CSA adoption (Bah et al., 2022). Moreover, skilled, environmentally
conscious farmers who are open to innovation tend to adopt CSA practices more readily. On the other hand, barriers
such as limited awareness, inadequate capacity, weak innovation, negative attitudes, and risk aversion hinder adoption
(Beatles, 2023). Similarly, Onodu et al. (2022) emphasize that while farmers’ awareness, perceived benefits, and
social support encourage CSA adoption, challenges such as lack of credit access and high startup costs significantly
reduce their willingness to adopt these practices.

There is a growing demand for snails as food. Snails are a nutrient-rich, protein-packed food source with
increasing demand worldwide. Understanding how to produce snails sustainably and adapt to climate change can help
meet this demand and support food security. For this reason, farmers need to understand adaptation strategies in the
science of Snail production, especially in developing countries, given their vulnerability to climate change. Adoption
of climate-smart snail farming practices can improve their resilience and food security.

Snail farming plays an important role in rural livelihoods, offering a source of iron, calcium, vitamin A, and other
essential nutrients. Despite these benefits, snail production in Nigeria remains relatively low. Farmers face unique
challenges, particularly those linked to climate change. Unfortunately, Climate-Smart Agricultural Practices, which
could provide effective solutions, are not yet widely integrated into snail farming. Consequently, this study examines
the determinants of snail farmers’ willingness to use climate-smart agricultural practices with the specific objectives
to:

1. To describe the Socio-economic characteristics of snail farmers, 2. To profile the climate-smart practices used
by snail farmers, 3. To determine the willingness of snail farmers to use climate-smart practices and 4. To find out
the effect of climate-smart agricultural practices on farmers' yield.

The Population of the study comprised farmers engaged in snail farming in Anambra State, Awka, Nigeria. A
multistage sampling technique was adopted for this study. The first stage involved the purposive selection of Local
Government Areas (LGAs), including Ogbaru, Anambra West, Thiala, Awka South, Idemili North, and Anaocha. The
selection was done based on the degree of involvement in snail farming as documented by the Anambra State
Agricultural Development Program. The second stage was the selection of three communities randomly from each
LGA and in the third stage, random sampling was used to select 10 snail farmers from each community. A total of
thirty farmers were sampled per LGA for a total of one hundred and eighty (180) farmers. A structured questionnaire
was used to collect data on farmers’ Socio-economic characteristics, climate-smart practices by snail farmers, snail
farmers' willingness to adopt climate-smart practices, and snail farmers’ annual yield. Data analysis was conducted
using descriptive and inferential statistics in SPSS.

Model Specification
Objective 3: Determinants of the willingness of snail farmers to use climate-smart:

The logit model, or logistic regression, is commonly used to model a dummy dependent variable with outcomes
(e.g., yes/no, success/failure). It assumes that the log-odds of the outcome are a linear function of the explanatory
variables. The logit model models the probability of an event occurring as a function of a set of explanatory variables
(Tilmann Gneiting and Roger Kiithn 2019). The logit equation is written as (Greene, 1993)

B(Y=1) = ef* ... (1)
1+ef*

With the cumulative distribution function given by
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F(Bx)= 1 ©)

1+ef*
Where 8 represents the vector of parameters associated with the factor x

Logit Model
Objective 3: was analyzed using the Logit Model. A logit model was used to model the relationship between a
dichotomous response variable and a set of regressor variables.

Assuming the probability that farmer n will choose to produce snail using a particular technology -non- smart
agriculture (NSA) or (smart agriculture (SA) is equal to proportion of maize farmers using that technology. The
individual empirical models to be estimated may be specified as:

NSA=f, + 1 X; 0, X, +  ......... BrXnt& oo, 3)
SA=y, + 1 X1+ v Xo + VnXn T & covenennnnn. 4)
Where NSA= -non- smart agriculture

SA= - smart agriculture

PBandy are vectors of respective parameters to be estimated.
X;= vectors of explanatory variables.

g;=error terms

The Explanatory Variables include
Farmers Characteristics

X=Training in climate-smart agriculture
Xa-Interest in climate-smart agriculture
Xs-Effect of climate change before
Xs=Weather variability experience

Xs-Type of climate-smart agriculture adopted
Xe=Implemented climate-smart agriculture

Objective 4: Effect of climate-smart agricultural practices on farmers' yield

Objective 3: Y= [3,+[3;; socioeconomic characteristics+ adaptation strategies+ mitigation strategies+e;
Y=Yield (kg) (dependent variable), socio-economic characteristics, and CSA practiced (independent variables)

Ordinary Least Squares (OLS)

Y =Bo +Bix, thay, -voone +&;

Y is the yield of maize
B=parameters to be estimated
x;= sets of explanatory variables
&= Error term

M= Age of farmers (years)
M7=Gender (Male=1 female=0)
M:=Farming experience (years)
Ms=Years of formal Education (years).
M,=Flock size

Ms=Labour (Man-days)
Ms=Water conservation
M7=Agroforestry integration)
Ms=Waste management
Moy=Natural Pest control

Socio-economic characteristics of the respondents
1. Gender

The results from Table 1 show that 35% of respondents are female, while 65% are male. The results have shown
that males mostly carry out snail production. The result agrees with the findings of Adewale & Belewu (2022),
who showed that the majority (92.5 %) were males, indicating the strength of men in the snail production sector
of farming.
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Table I: Socio-economic Characteristics of Snail Farmers

Variables Frequency Percentage
Sex
Male 117 65.00
Female 63 35.00
Age
30 63 35.00 31-40 4| 22.77
41-50 36 20.00
51-60 22 12.22
>60 18 10.00
Marital Status
Single 72 40.00
Married 108 60.00
Household Size
1-2 38 20.00
5-6 72 40.00
7-8 54 30.00
Major Occupation
Farming 54 30.00
Civil Service 50 27.77
Trading/ Artisanship 76 42.22
Years in school
1-6 38 20.00 7-12 108 60.00
>12 38 20.00
Extension contacts

153 85.00

27 15.00

Age

Age is very important in agricultural production, as it determines an individual's physical strength. Young people
tend to withstand stress and put more time into various agricultural operations, which can result in increased output.
The results from Table 1 indicate that 22.50% of the snail farmers are within the 31-40 years age bracket, 12.50% are
within the 51-60 years age bracket, and 21-30 years are within the 39.05% bracket. The mean age of the respondents
is 36.9years. This indicates that the majority of respondents are relatively young people actively engaged in
agricultural operations. The result agrees with Adewale & Belewu (2022), who stated that most (39.2%) of the
respondents’ ages fall in the range of 41-50 years, with a mean of 41.58. Aiyeloja & Ogunjinmi (2010) also
revealed the predominance of men (90 %) in snail production.

Educational qualification

Respondents' educational level plays an important role in snail production. According to Oladejo (2010),
education is important in achieving a high level of management capabilities. The findings show that 60% of
respondents have secondary education, 20% have tertiary education, and 20% have only primary education. It implies
that all the respondents have formal education, which is likely contribute to high returns to their production level.

Marital Status and Household Size

The marital status indicates that 60% of the respondents are married, and 40% are single. The implication is that
family labor can substitute for paid labor. Table 1 further reveals that 30% of respondents have a household size of
1-5 persons, and 70% have a household size of 6-10 persons. The implication is that family labor can substitute for
paid labor. The result aligns with Adewale & Belewu (2022), who found that Most (86.7%) of the farmers were
married and had large family sizes (mean household size of 4.12).

Major occupation

The majority of the respondents are practicing solely in business (42%), while 30% are into farming and 27.50%
are civil servants

Table 2 presents the climate-smart practices used by snail farmers and reveals that 50% of users adopt water
conservation, which is equal to the level among non-users. The percentage of respondents adopting Agroforestry
Integration and waste management is 72%, which is greater than the level of users at 27%, and could be a result of a lack
of knowledge of these climate-smart practices. The percentage of non-users of Energy Efficiency and Habitat
preservation is 95%, with 5% of users, probably due to very low knowledge and technical know-how on how to apply
them. The table also shows that more users use natural Pest control and natural feeding, with 87% and 100% of users,
respectively, and 12.50% and 0% of non-users, respectively.

Table 4.3 shows the results of a logistic regression model. The log-likelihood of -60.70 is significant at the 1%
level (Prob>chi2=0.000), indicating that the model is statistically significant. The LR chi2 (8) = 67.79 and Pseudo R2
= 0.41 also affirm that the model as a whole is statistically significant.
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Table 2: Climate-smart agricultural practices used by snail farmers

Adaptation strategies frequency percentage cumulative
Water Conservation

Non-users 90 50.00 50.00
Users 90 50.00 100.00
Agroforestry Integration

Non-users 130 72.22 72.50
Users 50 27.50 100.00
Energy/Feed Efficiency

Non-users 171 95.00 95.00
Users 09 5.00 100.00
Waste Management

Non-users 129 71.67 72.50
Users 51 28.33 100.00
Natural Pest Control

Non-users 23 12.77 12.50
Users 157 87.72 100.00
Habitat Preservation

Non-users 171 95.00. 95.00
Users 09 5.00 100.00

Field survey, 2024.

Table 3: Determinants of willingness to use climate-smart practices by snail farmers

Result Marginal effect
Variables Coefficient P>|z]  Coefficient P>|z]|
Age 0.043 0.1492 o0.101 0.142
Sex 0. 606 0.001  0.0452%* 0.041
Trained in CSA 2.90 0.000 0.65%* 0.000
Interest in ¢ CSA 0.17 0.008  0.42%** 0.007
Weather variability experience in the past 1.26 0.09 0.30* 0.098
Type of climate-smart agriculture adopted in the past |1 5wk 0.000 -0.49%** 0.000
Implementation of climate-smart agriculture 0.037** 0.006 -0.02%* 0.001
Constant -2.07 0.05

Log likelihood=-60.70; Prob>chi2=0.000; LR chi2 (8)=67.79; Pseudo R2=0.41; No of obs=180
Field survey, 2024.

Age

The coefficient for age (0.043; P=0.142) indicates that age has a small positive effect on age, suggesting that age
is not a significant predictor of willingness to use climate-smart practices among snail farmers. Marginal effect: 0.10
(P=0.142) — The marginal effect of age is small and not significant, reinforcing that age does not have a meaningful
impact on willingness to use climate-smart practices. (Kassa, 2022; Nazifi, 2024), consistent with your logistic result,
where age was not a significant predictor.
Sex

Coefficient: 0.606 (P=0.001) — Sex is a significant predictor (p < 0.05) and has a strong positive effect on the
outcome. Marginal effect: 0.0452 (P=0.041) — The marginal effect is smaller but still significant, indicating sex
affects the likelihood of the outcome. Men are significantly more likely than women to adopt CSA practices. This
could be due to differences in access to resources, decision-making power, or exposure to agricultural innovations.
Gender-sensitive policies may be needed to close this gap (Abegunde et al., 2020).

Training in climate-smart agriculture

The coefficient is 2.90, and the p-value shows a 1% level of significance. This shows that training in climate-
smart agriculture has a positive effect on the willingness to adopt it. The marginal effect is significant (p < 0.0001),
indicating that a 1% increase in climate-smart agriculture training will lead to a 65% increase in willingness to. adopt
climate-smart agriculture. Farmers who received training in climate-smart agriculture were far more likely to adopt
these practices. Training boosts awareness, confidence, and technical know-how—making it a powerful tool for
change (Shittu et al., 2021). Strong positive effect of training on willingness to adopt CSA replicates a common and
robust finding: training/extension is among the strongest levers to increase CSA uptake (Shittu, 2021; Barasa, 2021)

Interest in climate-smart agriculture

The coefficient is 0.17 (P=0.008), indicating that interest in climate-smart agriculture has a significant positive
effect on the outcome. The p-value showed a 5% level of significance. This shows that interest in climate-smart
agriculture has a positive influence on willingness to adopt it. The marginal effect is significant (p < 0.001), indicating
that a 5% increase in climate-smart agriculture training will lead to a 42% increase in willingness to. adopt climate-
smart agriculture. Farmers who expressed interest in CSA even before training were more willing to adopt it. This
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highlights the importance of motivation and personal engagement. Outreach efforts that spark curiosity and
enthusiasm could be highly effective (Tiamiu et al., 2018).

Weather variability experience in the past

The Coefficient is 1.26 (P=0.098). Weather variability faced—This variable has a positive effect that approaches
statistical significance at the 5% level (P=0.053), suggesting that weather variability might impact the likelihood of
adoption. The marginal effect (P=0.022) This is negative and statistically significant, meaning that while weather
variability might initially seem positive, in practice, it may reduce the likelihood of adopting climate-smart agriculture.
Farmers who had previously experienced the effects of climate change were more willing to adopt CSA. While not
statistically strong, this trend suggests that personal exposure to climate risks can drive behavioral change (Lobell et al.,
2011).

Type of climate-smart agriculture adopted

The coefficient is 1.15 (p < 0.001). The type of climate-smart agriculture adopted in the past has a strong, highly
significant positive effect at the 1% significance level, meaning certain types of climate-smart agriculture practices are
much more likely to be adopted. The marginal effect (p < 0.001). Despite the positive coefficient, the marginal effect is
negative and highly significant, suggesting that the specific types adopted may have a complex relationship with overall
adoption rates. The specific CSA practices adopted strongly influenced willingness. Some methods may be more
practical or appealing than others. Tailoring CSA options to local contexts is essential (Abegunde et al., 2020).

Implemented climate-smart agriculture

The Coefficient is 0.037 (P=0.006). Implementing climate-smart agriculture has a significant positive effect on
outcomes; the p-value is 5%. This shows that implementing climate-smart agriculture has a positive influence on
willingness to adopt it. The marginal effect is negative and statistically significant (P=0.001), suggesting that the
actual implementation may slightly decrease the likelihood of further adoption if the process is too complex or taxing
for farmers.

Table 4: Effect of Climate Smart Agricultural Practices on Farmers' Yield

Result Marginal effect

Variables Coefficient P>|z| Coefficient  P>|z]
Sex 493.1141 0.101

Experience 4025.975* 0.017

education 733.1342% 0.013

Flock size 65.11998%** 0.000

labour 15.41381 0.140

Water conservation 1.982276 * 0.041

Agroforestry integration 0.3678827 ** 0.0736

Waste management 0.6161437** 0.0562

Natural Pest control 0. 6891083 0.481

Number of obs = 180

Prob>F = 0.0000 R-squared = 0.6757 Adj R-squared= 0.5665

Field survey, 2024.

Table 4.4 presents the results of a logistic regression model analyzing the impact of several variables on an
outcome, along with their marginal effects. A detailed interpretation shows that Prob>F=0.0000, R-squared=0.6757,
and Adj R-squared=0.5665, indicating that the predictors, as a group, significantly explain the outcome. Adj R-
squared=0.5665 — The pseudo-R-squared value indicates that about 51.00% of the variation in the outcome is
explained by the model, which is an average.

Flock size

Coefficient: 65.11998*** (0.000) has a large positive and statistically significant effect on yield. The higher the
number of snails used for production, the higher the yield. This is in line with the work of Garr et al. (2011) and Posch
et al. (2012).

Water conservation

Coefficient: 1.982 (P=0.041) — Water conservation has a large positive and statistically significant effect on the
outcome, meaning that implementing water conservation measures strongly increases the yield. This positive
coefficient is consistent with these findings (Rockstrom et al., 2008)

Agroforestry integration

Coefficient: 0.368 (P=0.074) — This variable has a positive but not statistically significant effect (P>0.05),
suggesting that agroforestry integration could increase the likelihood of the outcome, but the evidence is not
conclusive. The finding is supported by the work of Baier et al. (2023) and Visscher et al. (2024).
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Waste management

The coefficient: 0.616 (P=0.056) — Waste management showed a moderately positive effect on yield with
statistical significance (P=0.056). Waste management improvements consistently show soil and yield benefits
(Kebede et al., 2023; Ho et al., 2022).

Natural pest control
Coefficient: 0.689 (P=0.481) — Natural pest control has a positive but statistically insignificant effect (P>0.05),
meaning there is no strong evidence that this variable significantly influences the yield.

Conclusions and recommendations

The study concluded that training, farmers' interest in CSA, and past CSA implementation significantly positively
affect willingness to adopt CSA. In contrast, the type of climate-smart agriculture previously adopted negatively
affects willingness to adopt CSA. Flock size, water conservation, agroforestry integration, waste management, and
natural pest control all had positive, statistically significant effects on yield.

1. Farmers trained on the use of Climate Smart Agricultural practices in snail farming by Extension agents should be
prioritized.

2. Design gender-sensitive interventions to address resource gaps that limit women’s adoption

3. Cost-effective water conservation and waste management practices should be encouraged

4. Guidance on optimal stocking densities to balance aggregate yield with per-animal growth and welfare should be
provided.
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