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ABSTRACT 

 
Climate change (CC) remains a global concern, negatively impacting food security and human health—

particularly through its impacts on climate-smart agriculture. Climate-Smart Agriculture (CSA) has emerged as 
an important adaptation and mitigation strategy to address the effects of CC, but its adoption has been low in 
Nigeria due to limited awareness and knowledge of CSA, among other factors. Thus, this study was conducted 
to determine snail farmers' willingness to adopt climate-smart agriculture practices in Anambra State. A 
multistage sampling technique was adopted. The first stage involved the purposive selection of Local 
Government Areas (LGAs), including Ogbaru, Anambra West, Ihiala, Awka South, Idemili North, and 
Anaocha. The selection was based on the degree of involvement in snail farming as documented by the Anambra 
State Agricultural Development Program. At the second stage, three communities were randomly selected from 
each LGA and in the third stage, random sampling was used to select ten snail farmers per community.  A total 
of thirty farmers were sampled per LGA, totaling a hundred and eighty (180) sampled farmers. A structured 
questionnaire was then used to collect data on farmers’ Socio-economic characteristics, the willingness to use 
climate-smart practices by snail farmers and snail farmer’s annual yield. Descriptive and inferential analyses 
were used. The result revealed that 65% of the respondents were males with a mean age of 39 years. The 
majority (60.0%) had secondary education, and 70% of respondents had a household size of 1-5 persons. The 
adaptation methods employed were water conservation (50.0%), agroforestry integration (27.5%), waste 
management (28.33%) and natural pest control (87.72%). Training, farmers' interest in CSA, and past 
implementation of CSA are significant at the 1% level. positively and significantly affect willingness to adopt 
CSA at 5% and 1%, respectively, while the type of climate-smart agriculture adopted negatively affected 
willingness to adopt CSA—flock size. (P=0.000), water conservation, agroforestry integration, waste 
management, and natural pest control (P=0.01) had positive and statistically significant effects on yield. The 
higher the number of snails used for production, the higher the yield. The study recommends training and water 
conservation as the minimum variables to increase adoption of CSA and, consequently, increase yield. 

 
Keywords: Determinants, Snail farmers, Willingness to use, Climate-smart, Agriculture. 

 
INTRODUCTION 
  

Climate change refers to long-term shifts in global or regional climate patterns that can result from natural 
processes such as solar cycles and volcanic eruptions, as well as from human activities such as deforestation 
and industrialization (EPA, 2024; NASA, 2024). Natural causes of climate change include meteorite impacts, 
volcanic eruptions, forest fires, ocean currents, and fluctuations in sunspot and solar cycles (NOAA, 2024; UCL, 
2024). For example, volcanic eruptions inject aerosols into the atmosphere that temporarily cool the Earth’s 
surface, while solar variations can influence temperature over centuries. However, these natural changes cannot 
fully explain the rapid warming observed in recent decades (EPA, 2024; Royal Society, 2023). Human activities 
remain the dominant driver of climate change. Key contributors include land-use changes such as deforestation 
and agricultural expansion, along with emissions from fossil fuel combustion—coal, petroleum, and natural 
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gas—which release large amounts of greenhouse gases (IPCC, 2023; NRDC, 2023). Deforestation in particular 
reduces natural carbon sinks, accounting for about 11% of global greenhouse gas emissions (Wikipedia, 2024). 
Additionally, burning fossil fuels has increased atmospheric CO₂ concentrations by more than 40% since the 
Industrial Revolution, a trend strongly linked to the current climate crisis (NASA, 2024; Royal Society, 2023). Recent 
assessments show that human activities have already caused about 1.0°C of global warming above pre-industrial 
levels. If this trajectory continues, global warming is likely to reach 1.5°C between 2030 and 2052 (United Nations, 
2022). 

Alongside these global concerns, agriculture and food systems are also adapting to climate change. Snail farming, 
also known as heliciculture, involves raising edible land snails primarily for human consumption. Snails are valued 
as a rich source of protein, minerals, and vitamins, and are considered a delicacy in many parts of the world. Beyond 
their nutritional benefits, snail farming is increasingly recognized for its sustainability and relatively low 
environmental footprint. According to Ojigbede et al. (2020), snail farming in Nigeria is predominantly practiced by 
small-scale farmers, and socio-economic, institutional, and technological factors influence its productivity and 
profitability. 

 Climate-Smart Agriculture (CSA) has emerged as an important adaptation and mitigation strategy to counter 
the effects of climate change (Partey et al., 2018). Farmers’ awareness and knowledge of CSA, access to credit, and 
extension services are significant drivers of CSA adoption (Bah et al., 2022). Moreover, skilled, environmentally 
conscious farmers who are open to innovation tend to adopt CSA practices more readily. On the other hand, barriers 
such as limited awareness, inadequate capacity, weak innovation, negative attitudes, and risk aversion hinder adoption 
(Beatles, 2023). Similarly, Onodu et al. (2022) emphasize that while farmers’ awareness, perceived benefits, and 
social support encourage CSA adoption, challenges such as lack of credit access and high startup costs significantly 
reduce their willingness to adopt these practices. 

There is a growing demand for snails as food. Snails are a nutrient-rich, protein-packed food source with 
increasing demand worldwide. Understanding how to produce snails sustainably and adapt to climate change can help 
meet this demand and support food security. For this reason, farmers need to understand adaptation strategies in the 
science of Snail production, especially in developing countries, given their vulnerability to climate change. Adoption 
of climate-smart snail farming practices can improve their resilience and food security. 

Snail farming plays an important role in rural livelihoods, offering a source of iron, calcium, vitamin A, and other 
essential nutrients. Despite these benefits, snail production in Nigeria remains relatively low. Farmers face unique 
challenges, particularly those linked to climate change. Unfortunately, Climate-Smart Agricultural Practices, which 
could provide effective solutions, are not yet widely integrated into snail farming. Consequently, this study examines 
the determinants of snail farmers’ willingness to use climate-smart agricultural practices with the specific objectives 
to: 

1. To describe the Socio-economic characteristics of snail farmers, 2. To profile the climate-smart practices used 
by snail farmers, 3. To determine the willingness of snail farmers to use climate-smart practices and 4. To find out 
the effect of climate-smart agricultural practices on farmers' yield. 
 
MATERIALS AND METHODS 
 
  The Population of the study comprised farmers engaged in snail farming in Anambra State, Awka, Nigeria. A 
multistage sampling technique was adopted for this study. The first stage involved the purposive selection of Local 
Government Areas (LGAs), including Ogbaru, Anambra West, Ihiala, Awka South, Idemili North, and Anaocha. The 
selection was done based on the degree of involvement in snail farming as documented by the Anambra State 
Agricultural Development Program. The second stage was the selection of three communities randomly from each 
LGA and in the third stage, random sampling was used to select 10 snail farmers from each community. A total of 
thirty farmers were sampled per LGA for a total of one hundred and eighty (180) farmers. A structured questionnaire 
was used to collect data on farmers’ Socio-economic characteristics, climate-smart practices by snail farmers, snail 
farmers' willingness to adopt climate-smart practices, and snail farmers’ annual yield. Data analysis was conducted 
using descriptive and inferential statistics in SPSS. 
 
Model Specification 
Objective 3: Determinants of the willingness of snail farmers to use climate-smart: 
  

The logit model, or logistic regression, is commonly used to model a dummy dependent variable with outcomes 
(e.g., yes/no, success/failure). It assumes that the log-odds of the outcome are a linear function of the explanatory 
variables. The logit model models the probability of an event occurring as a function of a set of explanatory variables 
(Tilmann Gneiting and Roger Kühn 2019). The logit equation is written as (Greene, 1993) 
𝑃௥(Y=1)   = 𝑒ఉ௫  ……………………. (1) 
1+𝑒ఉ௫ 
 
With the cumulative distribution function given by 
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F(𝛽x)=             1                 ……………………. (2) 
1+𝑒ఉ௫ 
Where 𝛽 represents the vector of parameters associated with the factor x 
 
Logit Model 
Objective 3: was analyzed using the Logit Model. A logit model was used to model the relationship between a 
dichotomous response variable and a set of regressor variables.  
 

Assuming the probability that farmer n will choose to produce snail using a particular technology -non- smart 
agriculture (NSA) or (smart agriculture (SA) is equal to proportion of maize farmers using that technology. The 
individual empirical models to be estimated may be specified as: 

 
NSA=𝛽଴ + 𝛽ଵ𝑋ଵ +𝛽ଶ𝑋ଶ +     ……… 𝛽௡𝑋௡ + 𝜀௜ ………… (3) 
SA=𝛾଴ + 𝛾ଵ𝑋ଵ+ 𝛾ଶ𝑋ଶ +     …………𝛾௡𝑋௡ + 𝜀௜ …………(4) 
Where NSA= -non- smart agriculture 
SA= - smart agriculture 
𝛽and𝛾 are vectors of respective parameters to be estimated. 
𝑋௜= vectors of explanatory variables. 
𝜀௜=error terms 
 
The Explanatory Variables include 
Farmers Characteristics 
X1=Training in climate-smart agriculture 
X2=Interest in climate-smart agriculture 
X3=Effect of climate change before 
X4=Weather variability experience 
X5=Type of climate-smart agriculture adopted 
X6 =Implemented climate-smart agriculture 
 
Objective 4: Effect of climate-smart agricultural practices on farmers' yield 
 
Objective 3: Y= β଴+β௜ଵ socioeconomic characteristics+ adaptation strategies+ mitigation strategies+𝜖௜ 
Y= Yield (kg) (dependent variable), socio-economic characteristics, and CSA practiced (independent variables) 
 
Ordinary Least Squares (OLS) 
  
Y =𝛽଴ +𝛽ଵ௑಺ +𝛽ଶ௑మ ……..+𝜀ூ 

Y is the yield of maize 
𝛽=parameters to be estimated 
𝑥௜= sets of explanatory variables 
𝜀ூ= Error term 
M1= Age of farmers (years) 
M7=Gender (Male=1 female=0) 
M2=Farming experience (years) 
M3=Years of formal Education (years). 
M4=Flock size  
M5=Labour (Man-days) 
M6=Water conservation 
M7=Agroforestry integration) 
M8=Waste management 
M9=Natural   Pest control 
 

RESULTS AND DISCUSSIONS 
 
Socio-economic characteristics of the respondents  
1. Gender   

The results from Table 1 show that 35% of respondents are female, while 65% are male. The results have shown 
that males mostly carry out snail production. The result agrees with the findings of Adewale & Belewu (2022), 
who showed that the majority (92.5 %) were males, indicating the strength of men in the snail production sector 
of farming. 
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Table 1: Socio-economic Characteristics of Snail Farmers 
Variables   Frequency   Percentage    
Sex 
Male     117      65.00        
Female     63     35.00              
Age         
30       63   35.00 31-40     41   22.77   
41-50     36   20.00 
51-60     22   12.22  
>60      18   10.00 
Marital Status 
Single     72       40.00        
Married     108       60.00    
Household Size          
1-2      38   20.00             
5-6      72   40.00 
7-8      54   30.00 
Major Occupation  
Farming     54         30.00        
 Civil Service           50        27.77        
Trading/ Artisanship  76       42.22       
Years in school           
1-6      38   20.00  7-12      108   60.00 
>12      38   20.00 
 Extension contacts 
      153      85.00        
                27   15.00  

 
Age  

Age is very important in agricultural production, as it determines an individual's physical strength. Young people 
tend to withstand stress and put more time into various agricultural operations, which can result in increased output. 
The results from Table 1 indicate that 22.50% of the snail farmers are within the 31-40 years age bracket, 12.50% are 
within the 51-60 years age bracket, and 21-30 years are within the 39.05% bracket. The mean age of the respondents 
is 36.9years. This indicates that the majority of respondents are relatively young people actively engaged in 
agricultural operations. The result agrees with Adewale & Belewu (2022), who stated that most (39.2%) of the 
respondents’ ages fall in the range of 41–50 years, with a mean of 41.58. Aiyeloja & Ogunjinmi (2010) also 
revealed the predominance of men (90 %) in snail production. 
 
Educational qualification 

Respondents' educational level plays an important role in snail production. According to Oladejo (2010), 
education is important in achieving a high level of management capabilities. The findings show that 60% of 
respondents have secondary education, 20% have tertiary education, and 20% have only primary education. It implies 
that all the respondents have formal education, which is likely contribute to high returns to their production level.  

 
Marital Status and Household Size 

The marital status indicates that 60% of the respondents are married, and 40% are single. The implication is that 
family labor can substitute for paid labor. Table 1 further reveals that 30% of respondents have a household size of 
1-5 persons, and 70% have a household size of 6-10 persons. The implication is that family labor can substitute for 
paid labor. The result aligns with Adewale & Belewu (2022), who found that Most (86.7%) of the farmers were 
married and had large family sizes (mean household size of 4.12).  

 
Major occupation  

The majority of the respondents are practicing solely in business (42%), while 30% are into farming and 27.50% 
are civil servants 

Table 2 presents the climate-smart practices used by snail farmers and reveals that 50% of users adopt water 
conservation, which is equal to the level among non-users. The percentage of respondents adopting Agroforestry 
Integration and waste management is 72%, which is greater than the level of users at 27%, and could be a result of a lack 
of knowledge of these climate-smart practices. The percentage of non-users of Energy Efficiency and Habitat 
preservation is 95%, with 5% of users, probably due to very low knowledge and technical know-how on how to apply 
them. The table also shows that more users use natural Pest control and natural feeding, with 87% and 100% of users, 
respectively, and 12.50% and 0% of non-users, respectively. 

Table 4.3 shows the results of a logistic regression model. The log-likelihood of -60.70 is significant at the 1% 
level (Prob>chi2=0.000), indicating that the model is statistically significant. The LR chi2 (8) = 67.79 and Pseudo R2 
= 0.41 also affirm that the model as a whole is statistically significant. 



Sci Soc Insights (2025), 4: 71-78 

 

75

Table 2: Climate-smart agricultural practices used by snail farmers 
Adaptation strategies      frequency  percentage  cumulative  
Water Conservation  
Non-users    90        50.00               50.00 
 Users      90       50.00               100.00              
Agroforestry Integration  
Non-users         130                72.22                     72.50 
Users      50                  27.50                     100.00 
Energy/Feed Efficiency  
Non-users                   171             95.00                      95.00 
Users     09                    5.00                      100.00 
Waste Management  
Non-users              129                 71.67                      72.50 
Users     51                   28.33                     100.00  
Natural Pest Control  
Non-users                           23                    12.77                     12.50 
Users     157                  87.72                     100.00  
Habitat Preservation  
Non-users                   171   95.00.                       95.00 
Users     09                   5.00                         100.00 
Field survey, 2024. 
 
Table 3: Determinants of willingness to use climate-smart practices by snail farmers 
Result Marginal effect  
Variables  Coefficient  P>|z|  Coefficient  P>|z|  
Age  0.043  0.142  0.10 1 0.142 
Sex  0. 606  0.001  0.0452*  0.041  
Trained in CSA 2.90  0.000  0.65***  0.000  
Interest in c CSA 0.17  0.008  0.42**  0.007  
Weather variability experience in the past 1.26  0.09  0.30*  0.098 
Type of climate-smart agriculture adopted in the past 1.15***  0.000  -0.49***  0.000  
Implementation of climate-smart agriculture 0.037**  0.006  -0.02**  0.001  
Constant  -2.07  0.05  
Log likelihood=-60.70; Prob>chi2=0.000; LR chi2 (8)=67.79; Pseudo R2=0.41; No of obs=180  
Field survey, 2024. 
 
Age 

The coefficient for age (0.043; P=0.142) indicates that age has a small positive effect on age, suggesting that age 
is not a significant predictor of willingness to use climate-smart practices among snail farmers. Marginal effect: 0.10 
(P=0.142) — The marginal effect of age is small and not significant, reinforcing that age does not have a meaningful 
impact on willingness to use climate-smart practices. (Kassa, 2022; Nazifi, 2024), consistent with your logistic result, 
where age was not a significant predictor. 
Sex 

Coefficient: 0.606 (P=0.001) — Sex is a significant predictor (p < 0.05) and has a strong positive effect on the 
outcome. Marginal effect: 0.0452 (P=0.041) — The marginal effect is smaller but still significant, indicating sex 
affects the likelihood of the outcome. Men are significantly more likely than women to adopt CSA practices. This 
could be due to differences in access to resources, decision-making power, or exposure to agricultural innovations. 
Gender-sensitive policies may be needed to close this gap (Abegunde et al., 2020). 
 
Training in climate-smart agriculture 

The coefficient is 2.90, and the p-value shows a 1% level of significance. This shows that training in climate-
smart agriculture has a positive effect on the willingness to adopt it. The marginal effect is significant (p < 0.0001), 
indicating that a 1% increase in climate-smart agriculture training will lead to a 65% increase in willingness to. adopt 
climate-smart agriculture. Farmers who received training in climate-smart agriculture were far more likely to adopt 
these practices. Training boosts awareness, confidence, and technical know-how—making it a powerful tool for 
change (Shittu et al., 2021). Strong positive effect of training on willingness to adopt CSA replicates a common and 
robust finding: training/extension is among the strongest levers to increase CSA uptake (Shittu, 2021; Barasa, 2021) 
 
Interest in climate-smart agriculture 

The coefficient is 0.17 (P=0.008), indicating that interest in climate-smart agriculture has a significant positive 
effect on the outcome. The p-value showed a 5% level of significance. This shows that interest in climate-smart 
agriculture has a positive influence on willingness to adopt it. The marginal effect is significant (p < 0.001), indicating 
that a 5% increase in climate-smart agriculture training will lead to a 42% increase in willingness to. adopt climate-
smart agriculture. Farmers who expressed interest in CSA even before training were more willing to adopt it. This 
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highlights the importance of motivation and personal engagement. Outreach efforts that spark curiosity and 
enthusiasm could be highly effective (Tiamiu et al., 2018). 
 
Weather variability experience in the past 

The Coefficient is 1.26 (P=0.098). Weather variability faced—This variable has a positive effect that approaches 
statistical significance at the 5% level (P=0.053), suggesting that weather variability might impact the likelihood of 
adoption. The marginal effect (P=0.022) This is negative and statistically significant, meaning that while weather 
variability might initially seem positive, in practice, it may reduce the likelihood of adopting climate-smart agriculture. 
Farmers who had previously experienced the effects of climate change were more willing to adopt CSA. While not 
statistically strong, this trend suggests that personal exposure to climate risks can drive behavioral change (Lobell et al., 
2011). 
 
Type of climate-smart agriculture adopted 

The coefficient is 1.15 (p < 0.001). The type of climate-smart agriculture adopted in the past has a strong, highly 
significant positive effect at the 1% significance level, meaning certain types of climate-smart agriculture practices are 
much more likely to be adopted. The marginal effect (p < 0.001). Despite the positive coefficient, the marginal effect is 
negative and highly significant, suggesting that the specific types adopted may have a complex relationship with overall 
adoption rates. The specific CSA practices adopted strongly influenced willingness. Some methods may be more 
practical or appealing than others. Tailoring CSA options to local contexts is essential (Abegunde et al., 2020). 
 
Implemented climate-smart agriculture 

The Coefficient is 0.037 (P=0.006). Implementing climate-smart agriculture has a significant positive effect on 
outcomes; the p-value is 5%. This shows that implementing climate-smart agriculture has a positive influence on 
willingness to adopt it. The marginal effect is negative and statistically significant (P=0.001), suggesting that the 
actual implementation may slightly decrease the likelihood of further adoption if the process is too complex or taxing 
for farmers. 

 
Table 4: Effect of Climate Smart Agricultural Practices on Farmers' Yield 
Result          Marginal effect 
Variables     Coefficient   P>|z|  Coefficient P>|z| 
Sex       493.1141        0.101 
Experience     4025.975*        0.017 
education     733.1342*        0.013 
Flock size     65.11998***     0.000 
labour     15.41381        0.140 
Water conservation   1.982276 *      0.041        
Agroforestry integration   0.3678827 **     0.0736      
 Waste management  0.6161437**     0.0562      
 Natural   Pest control  0. 6891083     0.481        
Number of obs    =        180 
Prob>F       =   0.0000  R-squared      =   0.6757   Adj R-squared=   0.5665 
Field survey, 2024. 

 
Table 4.4 presents the results of a logistic regression model analyzing the impact of several variables on an 

outcome, along with their marginal effects. A detailed interpretation shows that Prob>F=0.0000, R-squared=0.6757, 
and Adj R-squared=0.5665, indicating that the predictors, as a group, significantly explain the outcome. Adj R-
squared=0.5665 — The pseudo-R-squared value indicates that about 51.00% of the variation in the outcome is 
explained by the model, which is an average. 
 
Flock size 

Coefficient: 65.11998*** (0.000) has a large positive and statistically significant effect on yield. The higher the 
number of snails used for production, the higher the yield. This is in line with the work of Garr et al. (2011) and Posch 
et al. (2012). 
 
Water conservation 

Coefficient: 1.982 (P=0.041) — Water conservation has a large positive and statistically significant effect on the 
outcome, meaning that implementing water conservation measures strongly increases the yield. This positive 
coefficient is consistent with these findings (Rockström et al., 2008) 
 
Agroforestry integration 

Coefficient: 0.368 (P=0.074) — This variable has a positive but not statistically significant effect (P>0.05), 
suggesting that agroforestry integration could increase the likelihood of the outcome, but the evidence is not 
conclusive. The finding is supported by the work of Baier et al. (2023) and Visscher et al. (2024). 
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Waste management 

The coefficient: 0.616 (P=0.056) — Waste management showed a moderately positive effect on yield with 
statistical significance (P=0.056). Waste management improvements consistently show soil and yield benefits 
(Kebede et al., 2023; Ho et al., 2022). 
 
Natural pest control 

Coefficient: 0.689 (P=0.481) — Natural pest control has a positive but statistically insignificant effect (P>0.05), 
meaning there is no strong evidence that this variable significantly influences the yield. 
 
Conclusions and recommendations 
The study concluded that training, farmers' interest in CSA, and past CSA implementation significantly positively 
affect willingness to adopt CSA. In contrast, the type of climate-smart agriculture previously adopted negatively 
affects willingness to adopt CSA. Flock size, water conservation, agroforestry integration, waste management, and 
natural pest control all had positive, statistically significant effects on yield.  
1. Farmers trained on the use of Climate Smart Agricultural practices in snail farming by Extension agents should be 
prioritized. 
2. Design gender‑sensitive interventions to address resource gaps that limit women’s adoption 
3.  Cost‑effective water conservation and waste management practices should be encouraged 
4. Guidance on optimal stocking densities to balance aggregate yield with per‑animal growth and welfare should be 
provided. 
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